

Exercises for 3.13–3.14

1. Here is something obvious. If we have evidence that $P \vee Q$ and we have evidence that $\neg P$, we have evidence that Q . Our proof system confirms this. Add the missing datums in the following derivation:

1. Γ	$\vdash P \vee Q$	premise
2. Δ	$\vdash \neg P$	premise
3. P	$\vdash P$	A
4. <u>$\Delta, \neg Q$</u>	$\vdash \neg P$	2
5. <u>$P, \neg Q$</u>	$\vdash P$	3
6. <u>Δ, P</u>	$\vdash \neg \neg Q$	4,5,¬I
7. Δ, P	$\vdash Q$	6,¬E
8. Q	$\vdash Q$	A
9. <u>Γ, Δ</u>	$\vdash Q$	1,7,8,∨E

2. Derivations can often be adapted to prove something similar. For instance, the above can be adapted easily to derive from $\Gamma \vdash \neg P \vee Q$ and $\Delta \vdash P$ to $\Gamma, \Delta \vdash Q$. Fill in the missing datums and annotations.

1. Γ	$\vdash \neg P \vee Q$	premise
2. Δ	$\vdash P$	premise
3. <u>$\neg P$</u>	$\vdash \neg P$	A
4. <u>$\Delta, \neg Q$</u>	$\vdash P$	2
5. <u>$\neg P, \neg Q$</u>	$\vdash \neg P$	3
6. <u>$\Delta, \neg P$</u>	$\vdash \neg \neg Q$	4,5,¬I
7. <u>$\Delta, \neg P$</u>	$\vdash Q$	6,¬E
8. Q	$\vdash Q$	A
9. <u>Γ, Δ</u>	$\vdash Q$	1,7,8,∨E

3. The Greek capital letters on the datum side are place-holders. You can plug anything you want into them. Take the derivation in Problem 2 above. You can plug P into Δ and add one more step at the end to show that you can infer from $\Gamma \vdash \neg P \vee Q$ to $\Gamma \vdash P \supset Q$ (which we should expect given the way the conditional is defined). Construct such a derivation.

Answer Key

1. Γ	$\vdash \neg P \vee Q$	premise
2. P	$\vdash P$	A
3. $\neg P$	$\vdash \neg P$	A
4. $P, \neg Q$	$\vdash P$	2
5. $\neg P, \neg Q$	$\vdash \neg P$	3
6. $P, \neg P$	$\vdash \neg \neg Q$	4,5,¬I
7. $P, \neg P$	$\vdash Q$	6,¬E
8. Q	$\vdash Q$	A
9. Γ, P	$\vdash Q$	1,7,8,∨E
10. Γ	$\vdash P \supset Q$	9,⊃I

4. The following is a derivation from $\Gamma \vdash P \supset Q$ to $\Gamma \vdash \neg P \vee Q$. Again, we should expect that there is such a derivation given the way the conditional was defined. Fill in the missing parts of the derivation:

1. Γ	$\vdash P \supset Q$	premise
2. $\neg(\neg P \vee Q)$	$\vdash \underline{\neg(\neg P \vee Q)}$	A
3. <u>$\neg P$</u>	$\vdash \neg P$	A
4. $\neg P$	$\vdash \neg P \vee Q$	<u>3, ∨I</u>
5. <u>$\neg(\neg P \vee Q), \neg P$</u>	<u>$\vdash \neg(\neg P \vee Q)$</u>	2
6. $\neg(\neg P \vee Q)$	$\vdash \neg \neg P$	4,5,¬I
7. <u>$\neg(\neg P \vee Q)$</u>	$\vdash \underline{P}$	6,¬E
8. <u>$\Gamma, \neg(\neg P \vee Q)$</u>	$\vdash Q$	1,7,⊃E
9. $\Gamma, \neg(\neg P \vee Q)$	$\vdash \neg P \vee Q$	8,∨I
10. Γ	$\vdash \neg \neg(\neg P \vee Q)$	<u>2,9,¬I</u>

11. $\Gamma \vdash \neg P \vee Q \dots \underline{10, \neg E}$

5. Suppose there is evidence that $P \supset Q$. In that case, there is evidence that $\neg Q \supset \neg P$. Our proof system confirms this. Construct a derivation from $\Gamma \vdash P \supset Q$ to $\Gamma \vdash \neg Q \supset \neg P$. Hint: you can adapt and modify one the derivations given in Section 3.13.

Answer Key

1. Γ	$\vdash P \supset Q$	premise
2. $\neg Q$	$\vdash \neg Q$	A
3. P	$\vdash P$	A
4. Γ, P	$\vdash Q$	1,3, $\supset E$
5. $\neg Q, P$	$\vdash \neg Q$	2
6. $\Gamma, \neg Q$	$\vdash \neg P$	4,5, $\neg I$
7. Γ	$\vdash \neg Q \supset \neg P$	6, $\supset I$

6. Correct any errors in the annotations of the following derivation from $\Gamma \vdash P \supset Q$ and $\Delta \vdash R \vee \neg Q$ to $\Gamma, \Delta \vdash P \supset R$ (the only errors are in the annotations):

1. Γ	$\vdash P \supset Q$	premise
2. Δ	$\vdash R \vee \neg Q$	

(premise)

3. R	$\vdash R$	A
4. R, P	$\vdash R$	3
5. R	$\vdash P \supset R$	

(4)

6. $\neg Q$	$\vdash \neg Q$	
-------------	-----------------	-------	--

(A)

7. P $\vdash P$ A

8. Γ, P $\vdash Q$ 1,7,

($\odot E$)

9. $\neg Q, P$ $\vdash \neg Q$ 6

10. $\Gamma, \neg Q$ $\vdash \neg P$

(8,9)

, $\neg I$

11. $\Gamma, \neg Q$ $\vdash \neg P \vee R$

(10)

, $\vee I$

12. $\neg P$ $\vdash \neg P$ A

13. $\neg P, \neg R$ $\vdash \neg P$

(12)

14. $P, \neg R$ $\vdash P$

(7)

15. $\neg P, P$ $\vdash \neg \neg R$ 13,14,

($\neg I$)

16. $\neg P, P$ $\vdash R$ 15,

($\neg E$)

17. $\neg P$ $\vdash P \supset R$ 16,

51

2,5,18

, vE

7. If you have evidence that $(W \vee Y) \supset Z$, you have evidence that $W \supset Z$.
 Construct a derivation from $\Gamma \vdash (W \vee Y) \supset Z$ to $\Gamma \vdash W \supset Z$.

Answer Key

1. Γ	$\vdash (W \vee Y) \supset Z$	premise
2. W	$\vdash W$	A
3. W	$\vdash W \vee Y$	2, $\vee L$
4. Γ, W	$\vdash Z$	1, 3, $\supset E$
5. Γ	$\vdash W \supset Z$	4, $\supset I$