

1. Fill in missing items:

1. $\Gamma \vdash (P \vee Q) \supset R$ premise
2. P $\vdash P$ A
3. $__$ $\vdash __$ 2, $\vee I$
4. $__$ $\vdash __$ 1,3, $\supset E$
5. $\Gamma \vdash __$ 4, $\supset I$
6. $Q \vdash Q$ A
7. $__$ $\vdash __$ 6, $\vee I$
8. $__$ $\vdash __$ 1,7, $\supset E$
9. $\Gamma \vdash Q \supset R$ 8, $\supset I$
10. $\Gamma \vdash __$ 5,9, $\wedge I$

2. Add missing items.

1. $\Gamma \vdash \neg P \wedge \neg Q$ premise
2. $P \vee Q \vdash P \vee Q$ A
3. $P \vdash __$ A
4. $\Gamma \vdash \neg P$ $__$
5. $P, P \vee Q \vdash P$ $__$
6. $\Gamma, __ \vdash \neg P$ 4
7. $__ \vdash \neg(P \vee Q)$ 5,6, $\neg I$
8. $__ \vdash Q$ A
9. $\Gamma \vdash \neg Q$ $__$
10. $Q, __ \vdash Q$ 8
11. $\Gamma, __ \vdash \neg Q$ 9
12. $__ \vdash \neg(P \vee Q)$ 10,11, $\neg I$
13. $\Gamma, P \vee Q \vdash \neg(P \vee Q)$ $__$
14. $\Gamma \vdash \neg(P \vee Q)$ $__$

3. Here is part of a derivation from $\Gamma \vdash \neg(P \vee Q)$ to $\Gamma \vdash \neg P \wedge \neg Q$. Complete the rest.

1. Γ	$\vdash \neg(P \vee Q)$	premise
2. P	$\vdash P$	A
3. P	$\vdash P \vee Q$	2, \vee I
4. Γ, P	$\vdash \neg(P \vee Q)$	1
5. Γ	$\vdash \neg P$	3,4, \neg I

4. When someone offers considerations that lead to a contradiction, that is usually taken to be a bad thing. One reason why contradictions are bad is captured by the observation known as *ex contradictione quodlibet*: from a contradiction, derive at will. That is, if you had proof of a contradiction you could prove anything you want. The following demonstrates the point. Add the missing annotations:

1. Γ	$\vdash P \wedge \neg P$
2. $\Gamma, \neg Q$	$\vdash P \wedge \neg P$
3. $\Gamma, \neg Q$	$\vdash P$
4. $\Gamma, \neg Q$	$\vdash \neg P$
5. Γ	$\vdash \neg \neg Q$
6. Γ	$\vdash Q$

Notice that you could replace Q with anything you please. So can equally well derive $\neg Q$. Here we have a decisive reason to reject the premise: something must have gone wrong in thinking that we have conclusive reason to accept the premise.

5. Derive from $\Gamma \vdash P \vee P$ to $\Gamma \vdash P$.

6. Derive from $\Gamma \vdash P \supset (Q \supset R)$ to $\Gamma \vdash (P \wedge Q) \supset R$. Hint: assume $P \wedge Q$.

7. Derive from $\Gamma \vdash (P \wedge Q) \supset R$ to $\Gamma \vdash P \supset (Q \supset R)$. Hint: assume P and assume Q .

8. We noted earlier that the conditional (\supset) has some odd features. The oddities show up in our proof system as well.

(a) Derive from $\Gamma \vdash P$ to $\Gamma \vdash Q \supset P$. (Hint: remember you can add anything you want to the datum of a sequent).

(b) Derive from $\Gamma \vdash \neg P$ to $\Gamma \vdash P \supset Q$. (Hint: assume P , and remember you can add anything you want, in particular $\neg Q$ to the datum—see also the problem at the top of these exercises.)

(c) Derive from $\Gamma \vdash P$ to $\Gamma \vdash \neg P \supset Q$. (Hint: assume $\neg P$; and don't forget the point about being able to add things to the datum.)

9. Derive from $\Gamma \vdash P \supset (Q \vee R)$ and $\Delta \vdash \neg Q$ to $\Gamma, \Delta \vdash P \supset R$. (Hint: First derive $\Gamma, P \vdash Q \vee R$. Then adapt the derivation in the first problem of the previous set of exercises.)