

1. Fill in missing items:

1. $\Gamma \vdash (P \vee Q) \supset R$ premise
2. $P \vdash P$ A
3. $\underline{P} \vdash \underline{P \vee Q}$ 2, $\vee I$
4. $\underline{\Gamma, P} \vdash \underline{R}$ 1,3, $\supset E$
5. $\Gamma \vdash \underline{P \supset R}$ 4, $\supset I$
6. $Q \vdash Q$ A
7. $\underline{Q} \vdash \underline{P \vee Q}$ 6, $\vee I$
8. $\underline{\Gamma, Q} \vdash \underline{R}$ 1,7, $\supset E$
9. $\Gamma \vdash Q \supset R$ 8, $\supset I$
10. $\Gamma \vdash \underline{(P \supset R) \wedge (Q \supset R)}$ 5,9, $\wedge I$

2. Add missing items.

1. $\Gamma \vdash \neg P \wedge \neg Q$ premise
2. $P \vee Q \vdash P \vee Q$ A
3. $P \vdash \underline{P}$ A
4. $\Gamma \vdash \neg P$ 1, $\wedge E$
5. $P, P \vee Q \vdash P$ 3
6. $\Gamma, \underline{P \vee Q} \vdash \neg P$ 4
7. $\underline{\Gamma, P} \vdash \neg(P \vee Q)$ 5,6, $\neg I$
8. $\underline{Q} \vdash Q$ A
9. $\Gamma \vdash \neg Q$ 1, $\wedge E$
10. $Q, \underline{P \vee Q} \vdash Q$ 8
11. $\Gamma, \underline{P \vee Q} \vdash \neg Q$ 9
12. $\underline{\Gamma, Q} \vdash \neg(P \vee Q)$ 10,11, $\neg I$
13. $\Gamma, P \vee Q \vdash \neg(P \vee Q)$ 2,7,12, $\vee E$
14. $\Gamma \vdash \neg(P \vee Q)$ 2,13, $\neg I$

3. Here is part of a derivation from $\Gamma \vdash \neg(P \vee Q)$ to $\Gamma \vdash \neg P \wedge \neg Q$. Complete the rest.

1. Γ	$\vdash \neg(P \vee Q)$	premise
2. P	$\vdash P$	A
3. P	$\vdash P \vee Q$	2, $\vee I$
4. Γ, P	$\vdash \neg(P \vee Q)$	1
5. Γ	$\vdash \neg P$	3,4, $\neg I$

Answer Key

6. Q	$\vdash Q$	A
7. Q	$\vdash P \vee Q$	6, $\vee I$
8. Γ, Q	$\vdash \neg(P \vee Q)$	1
9. Γ	$\vdash \neg Q$	7,8, $\neg I$
10. Γ	$\vdash \neg P \wedge \neg Q$	5,9, $\wedge I$

4. When someone offers considerations that lead to a contradiction, that is usually taken to be a bad thing. One reason why contradictions are bad is captured by the observation known as *ex contradictione quodlibet*: from a contradiction, derive at will. That is, if you had proof of a contradiction you could prove anything you want. The following demonstrates the point. Add the missing annotations:

1. Γ	$\vdash P \wedge \neg P$	<u>premise</u>
2. $\Gamma, \neg Q$	$\vdash P \wedge \neg P$	<u>1</u>
3. $\Gamma, \neg Q$	$\vdash P$	<u>2, $\wedge E$</u>
4. $\Gamma, \neg Q$	$\vdash \neg P$	<u>2, $\wedge E$</u>
5. Γ	$\vdash \neg \neg Q$	<u>3,4, $\neg I$</u>
6. Γ	$\vdash Q$	<u>5, $\neg E$</u>

Notice that you could replace Q with anything you please. So can equally well derive $\neg Q$. Here we have a decisive reason to reject the premise: something must have gone wrong in thinking that we have conclusive reason to accept the premise.

5. Derive from $\Gamma \vdash P \vee P$ to $\Gamma \vdash P$.

Answer Key

1. Γ	$\vdash P \vee P$	premise
2. P	$\vdash P$	A
3. Γ	$\vdash P$	1,2,2, $\vee E$

6. Derive from $\Gamma \vdash P \supset (Q \supset R)$ to $\Gamma \vdash (P \wedge Q) \supset R$. Hint: assume $P \wedge Q$.

Answer Key

1. Γ	$\vdash P \supset (Q \supset R)$	premise
2. $P \wedge Q$	$\vdash P \wedge Q$	A
3. $P \wedge Q$	$\vdash P$	2, $\wedge E$
4. $\Gamma, P \wedge Q$	$\vdash Q \supset R$	1,3, $\supset E$
5. $P \wedge Q$	$\vdash Q$	2, $\wedge E$
6. $\Gamma, P \wedge Q$	$\vdash R$	4,5, $\supset E$
7. Γ	$\vdash (P \wedge Q) \supset R$	6, $\supset I$

7. Derive from $\Gamma \vdash (P \wedge Q) \supset R$ to $\Gamma \vdash P \supset (Q \supset R)$. Hint: assume P and assume Q .

Answer Key

1. Γ	$\vdash (P \wedge Q) \supset R$ premise
2. P	$\vdash P$ A
3. Q	$\vdash Q$ A
4. P, Q	$\vdash P \wedge Q$ 2,3, \wedge I
5. Γ, P, Q	$\vdash R$ 1,4, \supset E
6. Γ, P	$\vdash Q \supset R$ 5, \supset I
7. Γ	$\vdash P \supset (Q \supset R)$ 6, \supset I

8. We noted earlier that the conditional (\supset) has some odd features. The oddities show up in our proof system as well.

(a) Derive from $\Gamma \vdash P$ to $\Gamma \vdash Q \supset P$. (Hint: remember you can add anything you want to the datum of a sequent).

Answer Key

1. Γ	$\vdash P$ premise
2. Γ, Q	$\vdash P$ 1
3. Γ	$\vdash Q \supset P$ 2, \supset I

(b) Derive from $\Gamma \vdash \neg P$ to $\Gamma \vdash P \supset Q$. (Hint: assume P , and remember you can add anything you want, in particular $\neg Q$ to the datum—see also the problem at the top of these exercises.)

Answer Key

1. Γ	$\vdash \neg P$ premise
2. P	$\vdash P$ A
3. $P, \neg Q$	$\vdash P$ 2
4. $\Gamma, \neg Q$	$\vdash \neg P$ 1
5. Γ, P	$\vdash \neg \neg Q$ 3,4, \neg I
6. Γ, P	$\vdash Q$ 5, \neg E
7. Γ	$\vdash P \supset Q$ 6, \supset I

(c) Derive from $\Gamma \vdash P$ to $\Gamma \vdash \neg P \supset Q$. (Hint: assume $\neg P$; and don't forget the point about being able to add things to the datum.)

Answer Key

1. Γ	$\vdash P$	premise
2. $\neg P$	$\vdash \neg P$	A
3. $\Gamma, \neg Q$	$\vdash P$	1
4. $\neg P, \neg Q$	$\vdash \neg P$	2
5. $\Gamma, \neg P$	$\vdash \neg \neg Q$	3,4,¬I
6. $\Gamma, \neg P$	$\vdash Q$	5,¬E
7. Γ	$\vdash \neg P \supset Q$	6,¬I

9. Derive from $\Gamma \vdash P \supset (Q \vee R)$ and $\Delta \vdash \neg Q$ to $\Gamma, \Delta \vdash P \supset R$. (Hint: First derive $\Gamma, P \vdash Q \vee R$. Then adapt the derivation in the first problem of the previous set of exercises.)

Answer Key

1. Γ	$\vdash P \supset (Q \vee R)$	premise
2. Δ	$\vdash \neg Q$	premise
3. P	$\vdash P$	A
4. Γ, P	$\vdash Q \vee R$	1,3,¬E
5. Q	$\vdash Q$	A
6. $\Delta, \neg R$	$\vdash \neg Q$	2
7. $Q, \neg R$	$\vdash Q$	5
8. Δ, Q	$\vdash \neg \neg R$	6,7,¬I
9. Δ, Q	$\vdash R$	8,¬E
10. R	$\vdash R$	A
11. Γ, Δ, P	$\vdash R$	4,9,10,¬E
12. Γ, Δ	$\vdash P \supset R$	11,¬I