

Exercises for 5.11-5.12

1. Add missing items (Hint: lines 6 and 11 are one of the more useful theorems of sentential logic):

1.	$\neg\forall x \neg Fx$	$\vdash \neg\forall x \neg Fx$	A
2.	$\neg\exists x Fx$	$\vdash \neg\exists x Fx$	A
3.	Fa	$\vdash Fa$	A
4.	Fa	$\vdash \exists x Fx$
5.		$\vdash _$	4, $\exists I$
6.		$\vdash _$
7.		$\vdash \neg\exists x Fx \supset \neg Fa$	5, 6, $\supset E$
8.	$\neg\exists x Fx$	$\vdash \neg Fa$
9.	$\neg\exists x Fx$	$\vdash _$	8, $\forall I$
10.		$\vdash \neg\exists x Fx \supset \forall x \neg Fx$
11.		$\vdash _$
12.		$\vdash \neg\forall x \neg Fx \supset \neg\neg\exists x Fx$	10, 11, $\neg\neg E$
13.	$\neg\forall x \neg Fx$	$\vdash \neg\neg\exists x Fx$
14.	$\neg\forall x \neg Fx$	$\vdash \exists x Fx$	13, $\neg E$

2. Suppose it is true that $\forall x(Fx \vee Gx) \supset Hx$, and suppose that Fa , where a is a constant. It follows that Ha . Turn this into a derivation. Here are the first two lines:

1. $\Gamma \vdash \forall x[(Fx \vee Gx) \supset Hx]$ premise
2. $\Delta \vdash Fa$ premise

3. Suppose everyone gets grumpy when hungry. So if everyone is hungry, everyone is grumpy. Turn this into a derivation. Here are the first two lines (Hx means x is hungry, Gx means x is grumpy; the conclusion you want to reach is $\Gamma \vdash \forall xHx \supset \forall xGx$):

1. $\Gamma \vdash \forall x(Hx \supset Gx)$ premise
2. $\forall xHx \vdash \forall xHx$ A

.....
.....
.....
.....
.....
.....
.....

4. Consider: No one is flawless; so everyone has flaws. Let's turn this into a derivation. Let Fx mean 'x has flaws' and let k be a constant. Hint: assume that k is not F .

.....
.....
.....
.....
.....
.....
.....
.....

5. Consider: dragons are mythical creatures; but there are no mythical creatures; thus, there are no dragons. Formalize this. Let Dx mean that x is a dragon, Mx mean that x is a mythical creature. Hint: derive something that enables you to use $\neg I$.

1. Γ	$\vdash \forall x(Dx \supset Mx)$	premise
2. Δ	$\vdash \neg \exists x Mx$	premise
3. $\exists x Dx$	$\vdash \exists x Dx$	A
4. Da	$\vdash Da$	A
5. Γ	$\vdash Da \supset Ma$	1, $\forall E$

6. Prove $\vdash \forall x(Fx \supset \forall y Gy) \supset \forall x \forall y(Fx \supset Gy)$.

(Hint: use $\forall E$ to get rid of the quantifiers, and then put them back on using $\forall I$.)