

The language of predicate logic

1. *Rx* means that x is a rodent. *Fx* means that x is a feline. *Exy* means that x eats y. *Cx* means that x is cute. Let *j* be a constant referring to Jerry, *t* be a constant referring to Tom, *m* be a constant referring to Minnie, and *k* be a constant referring to Kitty. Translate the following English sentences into sentences of predicate logic.

The provided answers are ‘standard’ answers. There might be other translations that are just as good.

(a) Jerry is a rodent.

Rj

(b) Kitty is a feline.

Fk

(c) Felines are cute.

$\forall x(Fx \supset Cx)$

(d) Tom is not cute.

$\neg Ct$

(e) If Tom is feline, then some felines are not cute.

$Ft \supset \exists x(Fx \wedge \neg Cx)$

(f) Tom does not eat Jerry.

$\neg Etj$

(g) Minnie is not a feline.

$$\neg Fm$$

(h) If something is not a feline, it is a rodent.

$$\forall x(\neg Fx \supset Rx)$$

(i) Some things are rodents.

$$\exists x Rx$$

(j) There are rodents.

$$\exists x Rx$$

(k) Rodents are not cute.

$$\forall x(Rx \supset \neg Cx)$$

(l) No rodent is cute.

$$\neg \exists x(Rx \wedge Cx)$$

(m) If Minnie is a rodent, Kitty eats Minnie.

$$Rm \supset Ekm$$

(n) Some rodents eat felines.

$$\exists x(Rx \wedge \exists y(Fy \wedge Exy))$$

(o) There are rodents that eat felines.

$$\exists x(Rx \wedge \exists y(Fy \wedge Exy))$$

(p) No rodents eat felines.

$$\neg \exists x(Rx \wedge \exists y(Fy \wedge Exy))$$

(q) Kitty does not eat rodents.

$$\neg\exists x(Rx \wedge Ekx)$$

(r) If something is a rodent, Kitty does not eat it.

$$\forall x(Rx \supset \neg Ekx)$$

(s) Some rodents are cute.

$$\exists x(Rx \wedge Cx)$$

(t) Some cute things eat cute things.

$$\exists x \exists y[Cx \wedge (Cy \wedge Exy)]$$

2. Let the domain of discourse be all 5C (Pomona, Pitzer, Scripps, Harvey Mudd, CMC) students. Let Fx mean that x is a Pomona student, Gx mean that x is a Scripps student, Hx mean that x is a Harvey Mudd student, Jx mean that x is a Pitzer student. Let's also say no one attends two 5C colleges at once (I think that's true), every 5C college has some students. Let Px mean that x is currently taking PHIL60, and let's say that PHIL60 has a mix of 5C students except CMC students. Finally, let Sxy mean that x and y are taking the same class.

Given this interpretation, indicate for each of the following sentences whether or not it is true.

(a) $\exists x Gx \wedge \exists x Zx$

..... True/False

The sentence says that there are Scripps students and there are Pitzer students.

(b) $\exists x (Fx \wedge Hx)$

..... True/False

The sentence says that there is someone who is both a Pomona and a Mudd student.

(c) $\forall x (Fx \supset Zx)$

..... True/False

The sentence says that every Pomona student is a Pitzer student.

(d) $\forall x (Gx \supset \neg Hx)$

..... True/False

The sentence says that anyone who is a Scripps student is not a Mudd student.

(e) $\exists x (Zx \wedge Hx)$

..... True/False

The sentences says that there is someone who is both a Pitzer student and a Mudd student.

(f) $\exists x(Px \wedge Fx)$

..... True/False

The sentence says that there is someone who is taking PHIL60 and is a Pomona student. Or, more colloquially, there is a Pomona student who is taking PHIL60.

(g) $\exists y(Py \wedge Fy)$

..... True/False

This means exactly the same thing as the previous sentence.

(h) $\neg\forall x(Px \supset Hx)$

..... True/False

The sentence says that not everyone who is taking PHIL60 is a Mudd student.

(i) $\forall x\forall y[(Px \wedge Py) \supset Sxy]$

..... True/False

The sentence says that if any two people are taking PHIL60, then they are taking the same course.

(j) $\forall x\forall y[Sxy \supset (Px \wedge Py)]$

..... True/False

The sentence says that if two people are taking the same course, then they are both taking PHIL60.

(k) $\forall x\{Fx \vee [Gx \vee (Hx \vee Zx)]\}$

..... True/False

The sentence says that everyone is a Pomona, Scripps, Mudd, or Pitzer student. (That's false since the domain is all the 5C students.)

(l) $\exists x \neg \{Fx \vee [Gx \vee (Hx \vee Zx)]\}$ (True)/False

The sentence says that there is someone who is not attending Pomona, Scripps, Mudd, or Pitzer.

(m) $\exists x (\neg Fx \wedge \neg Gx)$ (True)/False

The sentence says that some people are neither Pomona nor Scripps students.

(n) $\exists x [(\neg Fx \wedge \neg Gx) \wedge Px]$ (True)/False

The sentence says that there are some who are neither Pomona nor Scripps students who are taking PHIL60.

(o) $\forall x \forall y [(Gx \wedge Hy) \supset \neg Sxy]$ True/(False)

The sentence says that no Scripps and Mudd students are taking the same class.

(p) $\exists x \exists y [(Fx \wedge Zy) \wedge Sxy]$ (True)/False

The sentence says that some Pomona and Pitzer students are taking the same class.

(q) $\forall z (Pz \supset \{Fz \vee [Gz \vee (Hz \vee Zz)]\})$ (True)/False

The sentence says that anyone taking PHIL60 is a Pomona, Scripps, Mudd, or Pitzer student.

(r) $\forall x[Px \supset \exists y(Zy \wedge Sxy)]$ (True) / False

The sentence says that anyone who is taking PHIL60 is taking the same class with some Pitzer student.

(s) $\forall x \exists y[Px \supset (Zy \wedge Sxy)]$ (True) / False

This says the same as the previous sentence.

(t) $\neg \exists x(Px \wedge \neg\{Fx \vee [Gx \vee (Hx \vee Zx)]\})$ (True) / False

The sentence says that there is no one who is taking PHIL60 but isn't a Pomona, Scripps, Mudd, or Pitzer student.

(u) $\neg \exists x(Px \wedge \{\neg Fx \wedge [\neg Gx \wedge (\neg Hx \wedge \neg Zx)]\})$ (True) / False

This is saying the same as the previous sentence.

3. For each of the following sentences, create an interpretation that makes the sentence true.

My answers are only examples. They are kept very simple to give you a sense of how to produce models without too much thought.

(a) Gb

- Domain: Just Bernie
- Extension of G : Bernie
- Referent of b : Bernie

(b) $Gc \supset Fc$

- Domain: Just Charlie
- Extension of G : empty
- Extension of F : empty
- Referent of c : Charlie

(c) $(Gc \supset Fc) \wedge \neg Fd$

- Domain: Charlie and Dannie
- Extension of F : Charlie
- Extension of G : Charlie
- Referent c : Charlie
- Referent of d : Dannie

(d) $\exists x Fx$

- Domain: Taylor
- Extension of F : Taylor

(e) $\exists x Gx$

- Domain: Britney
- Extension of G : Britney

(f) $\exists x Fx \wedge \exists x Gx$

- Domain: Taylor and Britney
- Extension of F: Taylor
- Extension of G: Britney

(g) $\exists x Fx \wedge \neg \exists x Gx$

- Domain: Lexi
- Extension of F: Lexi
- Extension of G: Empty

(h) $\forall x (Gx \supset Fx)$

- Domain: Venus
- Extension of G: Venus
- Extension of F: Venus

(i) $\neg \forall x (Gx \supset Fx)$

- Domain: Venus and Pluto
- Extension of G: Venus and Pluto
- Extension of F: Venus

(j) $\neg \exists x (Fx \vee Gx)$

- Domain: Ivy
- Extension of F: empty
- Extension of G: empty